The generator matrix

 1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  X  1  1  1  1  1  1  X  1  1  1  1  1  1  1  1 2*X  1  1  1  1  1  0  1  1 2*X  1  1  1  1  1  1  1  1  1  1  1  1  1  X  1  1  X  1  1  1  1  1 a^6*X  X  1
 0  1  1  a a^7*X+a^2 a^7*X+2 a^7  0  X a^5  X a^3 a^7*X+a^6 a*X a^7*X+2 a^7 a*X X+a^7  a X+a^7 a*X+a^7 2*X+a^7 a^5 a^7*X+a^6 a^2*X  1 a^7*X+a^2 a^7*X+1 a^3 X+a^5 a^6*X+2 X+a^5 a^6*X+a^6 X+a a^6*X+2 a^7*X+1 a^6*X+a^2 X+a^3  1 a^5*X+2 a*X+a^5 a^6*X+1 X+a^3 X+a a^6*X+a^2  1 a^6*X+a^6 2*X+2 a*X+a^5 a^6*X+1 a^2*X+a a^5*X+a^2 a*X+a^3 a^5*X+a^6  1 a^5*X+1 a*X+a a^2 a^2*X+a^3 a^5*X+a^6  1 a*X+a^5 a*X+a^7  1 a^5*X+a^2 2*X+a^6 a^7*X+1 a*X+a 2*X+a^3 a^2*X+a^5 a^5*X+2 a^2 a^5*X+1 a^2*X+a a^2*X+a^3 a^7*X+2 a^3*X+a^7 a^7*X a*X a^7*X+a^6  1 a^2*X a^2*X+2 a^2*X+a^5 a^2*X+a^7 X+a^3  1 a^2*X a^6*X+1
 0  0 a^7*X a*X a^6*X a^5*X 2*X a^3*X a^5*X  X a*X  X a^6*X a^7*X a^2*X a^3*X  X a^6*X a^2*X a*X a^2*X  0 a^5*X a^7*X a^2*X a^7*X 2*X a^3*X a^7*X  0 2*X a^3*X 2*X a^7*X  X  0 a^7*X a^5*X a^3*X a^6*X 2*X a^6*X  0 a^3*X a^2*X a^5*X a^5*X a*X a^6*X a^2*X  X a^5*X 2*X a^3*X a^6*X a^5*X 2*X  0 a*X a^2*X  X a*X  X 2*X a^3*X a*X  X a^6*X a^2*X a^7*X  0 a*X 2*X  0 a^3*X a^7*X a^5*X a^3*X a^6*X  X a*X 2*X a^3*X a^2*X a^7*X a^6*X a^2*X  0 a*X

generates a code of length 89 over F9[X]/(X^2) who�s minimum homogenous weight is 695.

Homogenous weight enumerator: w(x)=1x^0+3096x^695+3528x^696+504x^702+4320x^704+12096x^705+216x^711+5400x^713+10584x^714+4680x^722+14616x^723+8x^729

The gray image is a linear code over GF(9) with n=801, k=5 and d=695.
This code was found by Heurico 1.16 in 12.1 seconds.